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Summary 

This paper describes the axisymmetric source-sink flow in a rapidly rotating cylinder. Relative fluid motion is 
induced by the presence of a sink in the bottom corner and a ring source located somewhere in the fluid, at some 
distance from the solid boundaries. In order to neglect nonlinear effects the volumetric flow rates are assumed to 
be small, i.e. 0(E1/2), with E the Ekman number of the flow. The transport from the source to the sink is 
carried by Ekman layers at the end caps, and a Stewartson layer at the sidewall. At the ring source a free 
Stewartson layer arises, in which the injected fluid is transported towards the Ekman layers. This Stewartson 
layer consists of layers of thicknesses E 1/4 and E 1/3, which both contribute to the vertical O(E 1/2) transport. 
The ring source is enveloped by a ring-shaped region of cross-sectional dimensions O(E 1/2 × El/2), in which the 
injected fluid is rearranged before erupting into the E 1/3 layer. As E 1/2 << E 1/3, this region appears as an 
isolated singularity in the E 1/3 layer; in fact it consists of a combination of an upward and a downward directed 
source, the strengths of which can be determined by transport arguments. The paper presents an analysis of the 
Ea/3-1ayer structure on the basis of a linear theory; it also describes how the analysis can be extended to the 
situation in which fluid is injected through an array of sources at different heights. 

1. Introduction 

Par t ly  because  o f  geophys i ca l  and  eng inee r ing  interes ts ,  severa l  i nves t iga to r s  (e.g. [1] to 

[5]) h a v e  s tud ied  source - s ink  f lows  in r ap id ly  ro t a t i ng  f lu ids  in a va r i e ty  o f  con f igu ra t ions .  

A n  i m p o r t a n t  eng inee r ing  a p p l i c a t i o n  o f  such  f lows  c o n c e r n s  the  gas  cen t r i fuge ,  as used  

fo r  s e p a r a t i o n  o f  u r a n i u m  i so topes  (see for  e x a m p l e  [6], [7]). A l t h o u g h  gas  f lows are  

essen t ia l ly  a f f ec t ed  by  compres s ib i l i t y  effects ,  s tudies  o f  i n c o m p r e s s i b l e  f lu ids  in s imi la r  

c en t r i f uge  c o n f i g u r a t i o n s  are  he lp fu l  to o b t a i n  ins ight  in the  c o m p l i c a t e d  f low charac te r i s -  

tics. F o r  m a t h e m a t i c a l  c o n v e n i e n c e  m o s t  inves t iga to r s  res t r i c ted  t hemse lves  to a x i s y m m e t -  

r ic  sou rce - s ink  a r r a n g e m e n t s ,  bes ides  a s s u m i n g  the  r e l a t ive  ve loc i t i es  to  be  smal l  e n o u g h  

as to neg lec t  iner t ia l  effects .  

H a s h i m o t o  [4] has  i nves t i ga t ed  the  f low of  an  i n c o m p r e s s i b l e  f lu id  in a r ap id ly  ro t a t i ng  

cy l i nde r  d u e  to l ine  sources  a n d  s inks d i s t r i bu t ed  a long  c o n c e n t r i c  c i rc les  on  the  top  and  

b o t t o m  disks. As  a resul t  of  these  a x i s y m m e t r i c  source - s ink  d i s t r i bu t ions  f ree  ver t ica l  

shea r  layers  ar ise  in the  o the rwise  geos t roph ica l l y  c o n t r o l l e d  flow. T h e i r  s t ruc tu re  is 

i den t i ca l  to the  shear  layers  s tud ied  by  S t e w a r t s o n  [8] and  cons is t s  o f  layers  o f  th icknesses  
E 1/4 and  E 1/3 ( E  is the  E k m a n  n u m b e r  o f  the  flow). I n  c o m b i n a t i o n  wi th  the  E k m a n  

layers  at  the  h o r i z o n t a l  e n d  caps  the  S t e w a r t s o n  layers  p l ay  an  essent ia l  pa r t  in ca r ry ing  
f lu id  f r o m  the  sources  to the  sinks. 

A n u m b e r  o f  i n t e r e s t i ng  source - s ink  a r r a n g e m e n t s  has  been  s tud ied  e x p e r i m e n t a l l y  by  

247 



248 

Hide [2]. In the simplest configuration considered, fluid was confined in a rapidly rotating 
annular region between two concentric cylinders and two horizontal top and bottom 
planes. Relative motion was generated by applying uniform injection and uniform 
withdrawal at the inner and outer sidewalls, respectively. Hide showed that the injected 
fluid is entirely carried by a Stewartson layer at the inner sidewall, the Ekman layers at the 
horizontal planes, and a Stewartson layer at the outer sidewall of the annulus; the flow 
outside the boundary layers is in geostrophic balance, and is governed by the Ekman 
layers. 

In a recent theoretical study Conlisk and Walker [9] investigated the fluid flow in a 
similar configuration, now due to uniform injection and withdrawal through thin axisym- 
metric slots in the sidewalls; they considered two different slot sizes, viz. O(E 1/2) and 
O(1), the latter value corresponding with a distributed source or sink. Special attention 
was given to the Stewartson layers at the sidewalls of the annulus. As in Hide's 
configuration [2] these shear layers play an essential part in transporting fluid from the 
sources to the sinks. As a consequence of its quasi-geostrophic character, the E 1/4 layer 
proves to be independent of the method of injection or withdrawal; details of the injection 
mode are only noticeable in the inner E 1/3 layer. 

The present paper focusses on the axisymmetric flow driven by injection from a ring 
source that is located at some distance from the solid flow boundaries, and withdrawal 
from a ring sink at the sidewall. When the source and the sink are not at the same radius, 
the transport from the source to the sink is carried by Ekman layers at the horizontal 
planes. Therefore, a free Stewartson shear-layer will arise at the line source, in order to 
carry the injected fluid to the Ekman layers. As in other configurations, [3,4,8,9], this 
Stewartson layer has a sandwich structure consisting of an outer E 1/4 layer and an inner 
E 1/3 layer, with the former also playing a part in the matching of the geostrophic swirl 
velocities on either side of the shear layer. The ring source, which is assumed to have an 
infinitesimal cross-section, is enveloped by a ring-shaped region of cross-sectional dimen- 
sions O(E 1/2 x E 1/2) in which the injected fluid is redistributed before it erupts into the 
E 1/3 layer. Because of its small lateral dimensions such a region appears as an isolated 
singularity in the E 1/3 layer, and can be described by a pair of upward and downward 
directed sources. It is shown in this paper that the individual source strengths can be 
determined from external transport requirements. 

A general formulation of the flow problem and a brief description of the geostrophic 
flow, the Ekman layers, and the Stewartson layer at the sidewall will be presented in 
Section 2. The Stewartson layer arising at the ring source is analysed in Section 3, and a 
discussion of the main results follows in Section 4. 

2. Formulation 

In order to formulate the problem mathematically, consider the flow of an incompressible 
fluid enclosed by two horizontal disks at distance H L  apart, and a cylinder with radius bL 
(see Fig. 1). This system rotates at angular velocity f~ about the (vertical) axis of 
symmetry. A steady relative motion of the fluid is generated by axisymmetric injection at 
a flow rate Q* through a ring-shaped line source of infinitesimal cross-sectional dimen- 
sions at some height hL ( < HL);  the radius of the ring is aL ( < bL)  and its symmetry axis 
coincides with the rotation axis. Fluid is withdrawn at the sidewall through a ring-shaped 
line source in the bottom corner. 
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Figure  1. Schemat ic  d i ag ram of the conf igura t ion;  fluid is emit ted  at flow rate Q from a r ing source located at  

( r  = a,  z = h),  and  wi thd rawn  at rate Q through a sink at  ( r  = b, z = 0). 

For a convenient mathematical analysis of the flow lengths and velocities are nondi- 
mensionalized by the length scale L and some characteristic velocity U*, respectively. 
When referred to a frame that rotates steadily with angular velocity £, the dimensionless 
equations of momentum and conservation of mass for stationary fluid flow are: 

R o ( v - V ) v + 2 k × v = - v p + E v Z v ,  V ' v = O  (2.1) 

with v the velocity vector in the rotating frame, p the reduced pressure and k a unit vector 
in axial direction: k = ~ / £ .  The two dimensionless parameters in (2.1) are the Rossby 
number  Ro and the Ekman number E, defined as 

Ro = U*/£L,  E = u / / ~ L  2, (2.2) 

where p is the kinematic fluid viscosity. It is assumed that the source-sink driven fluid 
motion is slow enough as to neglect the non-linear terms in (2.1), which assumption 
requires Ro << E 1/4 for axisymmetric flows (see [5]). In addition it is assumed that the 
container is rapidly rotating, i.e. E << 1. In order to have a small Rossby-number flow, 
attention is restricted to small flow rates 

Q* = Q U*L2Ex/2, (2.3) 

where Q is the dimensionless volumetric flow rate. 
Throughout this paper  the relative fluid motion is related to a co-rotating cylindrical 

coordinate system (r,  O, z), with the z-axis coinciding with the rotation axis; radial, 
azimuthal and axial velocity components are denoted by (u, v, w). The bot tom and top 
disks of the cylinder are given by z = 0 and z = H, and the sidewall is located at r = b. The 
ring source is at ( r  = a, z = h), while the ring sink lies in the bot tom corner of the cylinder 
(r=b,z=O).  
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In the annular region a < r < b, 0 < z < H the flow at some distance from the solid 
walls is not affected by viscosity, and is governed by a geostrophic balance of forces: 

2k × v I = - ~7pi , ~7 " V I = 0 (2.4) 

(the subscript I denotes geostrophic interior motion). Ekman layers arise at the horizontal 
boundaries at z = 0 and z = H in order to adjust the flow to relative rest. Because there is 
no differential rotation between the horizontal disks, the suction conditions imposed by 
these Ekman layers require that w t = 0. As can be seen from the azimuthal component of 
the momentum equation (2.4), radial motion is absent in axisymmetric interior configura- 
tions. This implies that the radial O(E 1/2) transport Q = 2~raQ~ = 2~rbQb from the source 
to the sink must entirely take place via the Ekman layers at both horizontal disks. Since 
the local (i.e. per unit length of circumference) radial transport in each of these Ekman 
layers measures - ½vi(r)E 1/2, it follows that 

Q aQa 
v I ( r )  = 2~'r r . . . . .  , u l = w  I=O.  (2.5) 

At the sidewall (r  = b) the azimuthal interior velocity is brought to relative rest by a 
Stewartson layer, consisting of an outer E 1/4 layer and a thin inner E 1/3 layer. The 
structure of such a boundary layer is wellknown, and for the situation with a singularity 
(source or sink) in the top or bottom corner it has been discussed by Conlisk and Walker 
[9]. Besides matching the interior swirl velocity, the Stewartson layer also carries a net 
O(E 1/2) transport of magnitude ½Qb downwards from the upper Ekman layer to the sink. 

3. The shear-layer structure 

The occurrence of a Stewartson layer at r = a is apparent from two reasons. First, a net 
O(E 1/2) transport towards the Ekman layers at z = 0 and z = H must be accomplished; 
such a vertical flux is not possible in the interior region, and has necessarily to be carried 
by a Stewartson layer. Secondly, the azimuthal interior flow driven by the Ekman layers 
must be matched smoothly to the zero-flow region r < a, 0 < z < H. As will be shown in 
the sequel this requires the presence of both an E 1/4 layer and an inner E 1/3 layer, with 
the former performing the O(1) matching and producing some O(E 1/2) flux, and the 
latter smoothing discontinuities in the E 1/4 layer and completing the O(E  1/2) transport to 
the Ekman layers. 

By considering the total O(E l/E) transport across a horizontal plane at arbitrary height 
z, including contributions from the sidewall layer (T b -- - ½Qb) and the Stewartson layer 
at the source (Ta), one derives 

2¢raTa(z)+2crbTo=-Q,  O < z < h  
= O, h < z < H  (3.1) 

or equivalently 

0 < z < h  

= +½Q.a,  h < z < n .  
(3.2) 
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This transport condition will be referred to in the analyses of the E ~/4 layer and the E 1/3 

layer. 

3.1. The E 1/4 layer 

In the E 1/4 layer the velocity components and the pressure are expanded in powers of 
E 1 / 4 :  

OO 

(U, U, w,p)= E ( EI/2U' V, E1/4W, E1/4p)E j/4, 
j = o  

and substitution into the linear equations (2.1) yields for the leading terms 

U s = V ~ = W ~ z = 0 ,  V ~ + 2 W ~ = 0 ,  2 U =  V~ (3.3) 

where ~ = (r - a ) E - 1 / 4  is the stretched radial coordinate. The Ekman suction conditions 

W ( z = 0 ) = ½ V ~ ,  W ( z = U ) = - ½ V ~  

enable one to derive from (3.3) 

2 
v ~  - ~ v = 0, 

which has the following general solutions: 

V + ( ~ ) = A +  + B + e x p ( - s ~ ) ,  ~>~0 
V - ( ~ ) = A - + B  ~ exp(s~5), ~ < 0 ,  (3.4) 

where s = ~ / 2 / H .  The constants A -+, B -+ can be determined by matching to the interiors 
on either side (~ ~ + oo) and by requiring continuity of V and V~ at ~ = 0; then it follows 
from (3.3): 

V+(~) = - 1 Q a [ 2 -  e x p ( - s ~ ) ] ,  V - ( f )  = - ½ 0 a  exp(s~), (3.5a) 

1 ^ 1 W+-( ~, z ) =  - ]sQa(~ - H )  exp(-s{(I ) ,  ( 3 . 5 b )  

^ 

U -+(4) = sgn(~) ~-~ exp(-s l (1) .  (3.5c) 

Inspection of these results shows that V~f, and therefore U as well, are discontinuous at 
= 0. These discontinuities have to be smoothed by the inner E 1/3 layer at ~ = 0. 

The vertical O ( E  1/2) transport in the E 1/4 layer is found by integrating W over the 
layer thickness, yielding 

f _ + ~ W ( , , z ) d ~ =  - ( ½ -  H ) { )  . .  (3.6) 
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Although this vertical transport is correctly balanced by the radial Ekman fluxes at z = 0 
and z = H, an additional contribution is needed to satisfy the flux condition (3.2) on 
0 < z < H. This contribution measures 

Z ^ 
2P(z) = - ~ Qa, 0 < z < h  

( = 1 -  a, h < z < H  
(3.7) 

and has to be produced by the E 1/3 layer. From the U solution (3.5c) it can be seen that 
the E ~/4 layer is fed radially by the E 1/3 layer at ~ = 0: 

fonU+(~  = O)dz = - f o n U - ( ~  = O)dz = ½Q,,. (3.8) 

The incoming fluxes at ~ = 0 + are uniform in z and are, according to (3.6), equally 
distributed to the Ekman layers at the horizontal disks (each Ekman layer receives a flux 
of magnitude {Q,) ,  yielding a symmetrical O ( E  1/2) circulation pattern in the E 1/4 layer. 
In conclusion, the main task of the E 1/3 layer lies in the distribution of the injected fluid 
in such a way that the E 1/4 layer receives a uniform flux given by (3.8) and that a vertical 
flux is produced as required by (3.7). It will become clear in the next section that these 
requirements are consistent with the smoothing of the discontinuities in U and V~, as 
mentioned above. 

3.2. The E 1/3 layer 

The velocity components and the pressure in the E a/3 layer are expanded as 

(U,U,W,P) = ~ (E1/31dj,~)j,~-I)j, E1/3t)j)E j/12, 
j=O 

and substitution into (2.1) yields for each field j ,  after elimination of the pressure, 

20 z = ¢%,.~, 2~vz = - f in . . ,  2fi = f,~,~ (3.9) 

with */= ( r - a ) E  -1/3. With regard to the orders of magnitude, it turns out that the 
smoothing of the jump discontinuities in U and Vii, and the production of vertical 
O ( E  1/2) transport must be carried out by the j  = 2 field. The boundary conditions for this 
j = 2 problem are 

T/ --'> -I- OG : U2, 1~2 "-~ 0 ; (3.10a) 

~1 ----0: 
Of2 0~,2 

~2, ~'2,071 ' O~ continuous, 

02v2 o + 32v2 
+ v&10 = + v, 10; 

0712 0772 o- 

(3.10b) 

z = 0 ,  H: ~ 2 = 0 ;  (3.10c) 



f 
+ o O  g ^ 

0 < z < h :  w2dv/ = -"-~Oa; 
- - o o  

( h < z < H :  = 1 -  ,,. 
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(3.10d) 

As in Conlisk and Walker's study [9] on the injection through thin slots in the sidewall, the 
ring source (which is assumed to have an infinitesimally small cross-section) is enveloped 
by a ring-shaped region of cross-sectional dimensions O(E  a/2 × E 1/2). The injected fluid 
is rearranged in this region, and erupts vertically upwards and downwards into the 
adjacent E 1/3 layer. On the scale of the E 1/3 layer this eruption appears as a 30/)-singu- 
larity in the vertical velocity, which is merely a consequence of the fact that E 1/2 << E 1/3, 
as E is a small number. Quite generally, one can write 

~(z=h- )=  C-a(.), ~(z=h+)= C+a(.), (3.11) 

where the singularity strengths C -+ are linked by mass conservation, viz. C + - C-  = Q~. 
Their individual values follow from the conditions (3.10d) for the vertical transport in the 
E 1/3 layer, yielding 

h ^ C + = (1 h ^ C -  = - "-~ aa, - "-~ ) O a .  (3.12) 

The (v2, ~2) problem (3 .9 ) -  (3.12) can be solved by writing the general solutions as 
Fourier series: 

¢v2 ~ =  ~ [a+e-V"l'71+b+e~'V"l"'+c~e '~2v"l"l] sin nTrz (3.13a) 
n=l n ' 

nq 'rz  
= - - ~ . l ~ o ~  02 -+ + ~ [ a : e  -v"l"l b : e  '~v"lnl c:e'°2v"lnl I cos H ' 

n z l  

with 00 = -  ½ + ½iv/3 -, and by applying the boundary conditions (3.10b) in order to 
determine the coefficients a f ,  bff and c~. However, the transport condition (3.10d) offers 
an important clue, as by using the series property (see e.g [10]) 

2 ~, 1 nTrh n~rz z 
-- 2., nC°S---H--sm' H - H '  0 < z < h  
~ n = l  

Z 

--1 h < z < H  
H '  

(3.14) 

it can be written in the following form: 

f+  ad,7 = 1 . - = ~ = 1 n c o s - - H - -  s m  / _ /  (3.15) 
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Now it is straightforward to calculate the coefficients, yielding 

cos- -y-s in  ~ , 
n = l  

~2(,/, z) = sgn(,/) ~ A.(q~3 _ q,2 _ qh¢~) ncrh COS ~ COS - -  
/ /  

n = l  

n ,/rz 

H 

(3.16) 

with 

P.a (2nor/H)1~3 
A.  = 3-gg~. ,  ~,,,= 

and 

q,a('r~; n) - e -(a/2)"ln' sin½"¢.l~l¢3-, 

~2(Y,; */) = e-(1/2)v"lnl cos½3',l/~, (3.17) 

t ~ 3 ( ~ n  ; "17) = e - r A n k  

The solution for the radial velocity follows immediately from (3.9c), giving: 

n~h n~rz 
uz('q, z) = sgn(~/) ~ ½y2A,(202 + ~3) cos--H--COS H 

n = l  

(3.18) 

As can be seen by differentiating (3.14) with respect to z, it appears that 
^ 

fi2(, /= 0 ± ) = -  sgn(~/)2-~, 0 < z < H ,  (3.19) 

which means that the total radial O(E 1/2) velocity u2 + U is now continuous across ,/, 
= 0. This implies that ~ + V~ is continuous as well. 

Finally, it is worth mentioning that the structure of the vertical O(E 1/2) transport in 
the E 1/3 layer is closely related to the occurrence of a jump discontinuity in ~,n. This can 
be illustrated by integration of the governing equation (3.9b) with respect to ~/, which 
yields 

_ t o¢  o_- + 
- o o  O r / 2  o +  " 

From the continuity requirement (3.10b) it follows that 

0 -+ = Oo (3.20) 
~ J _ o o  ~ d n  = - -~- .  

Integration with respect to z on the separate intervals 0 < z < h and h < z < H, and 
applying w2 = 0 at the boundaries z = 0, H results in the expression (3.10d) for the vertical 
f l u x .  
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This completes the analysis of the O(E  1/2) circulation in the Stewartson layer at r = a. 
Returning to the El/a-layer solutions (3.5), it appears that, though W is continuous across 

= 0, its ~-derivative contains a jump discontinuity there. In view of the orders of 
magnitude, this discontinuity must be smoothed by the j  = 4 field of the E 1/3 layer, which 
can be analysed in the usual way. The analysis is slightly complicated due to the more 
involved form of the Ekman suction conditions, 

+ 4 ( z  = 0)  = 2  z 0' + , ( z  = = - 2  an z=,, (3.21) 

A similar problem has been discussed in [11], however, and the analysis of the j  = 4 field is 
therefore omitted here. 

4. Discussion 

In the previous section the structure of a detached Stewartson layer has been analysed for 
the situation where fluid is emitted from a ring source at an arbitrary distance from the 
horizontal flow boundaries. With regard to the O(E 1/2) circulation the E a/4 layer appears 
to play a passive part, and its presence is only required for the matching of the interior 
azimuthal velocities on either side. Details of the source configuration are only noticeable 
in the inner E 1/3 layer. The fluid emitted from the source is rearranged in a small region 
of cross-sectional dimensions O(E1/Z× E 1/2) before it erupts vertically into the E 1/3 
layer. The singularity strengths associated with these eruptions can be found from general 
transport arguments, and appear to depend on the distances between the source and the 
end caps of the cylinder, see (3.12). It is easy to verify that the singularity strengths (3.12) 
show a gradual transition to values associated with injection through ring sources at the 
bottom or the top disk, as h ~ 0 or h ~ H, respectively (cf. Hashimoto [4]). This is in 
contrast with Conlisk and Walker's [9] treatment of the singularity strengths associated 
with injection through a thin slot in the sidewall: they assume symmetry by requiring the 
upward and downward directed singularities to be of equal strength. In fact this is only 
appropriate for the special case where the source is positioned at equal distances from the 
end caps. Fortunately their subsequent results do not seem to be affected by the symmetry 
assumption. This is easily verified by using the solution procedure applied in Section 3 of 
the present paper (it is worth noting that this solution technique is much less involved 
than Conlisk and Walker's technique of introducing mirror images of the singularities in 
order to account for the impermeability of the end caps). According to the technique 
described in Section 3, the velocities vz and w2 are written as general Fourier series of the 
form (3.13); the coefficients are determined by requiring no-slip at the sidewall and by 
applying the vertical-transport condition, which in Conlisk and Walker's problem takes a 
form similar to (3.15). Then it follows after a few lines of algebra that their results are 
correct. 

The analysis of the detached Stewartson-layer structure due to a single source (Section 
3) allows extension to multiple sources and sinks positioned at different heights. Assume 
there is an array of N sources at radius r = a  located at arbitrary heights z - - h  i 
(i = 1, 2 . . . . .  N),  and with strengths Qi such that 

N N 

~_~ QJ2rra = E Qa, = Qa. (4.1) 
i ~ l  i = 1  
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By considering the vertical O ( E  1/2) flux across a horizontal plane at arbitrary height z, 
including contributions from the Stewartson layer at the sidewall (r  = b) and the E 1/4 
layer at r = a, one derives for the vertical O ( E  ~/2) transport IF in the E ~/3 layer: 

k 
~ - t z ~ = -  z A 

~'nQa q- E Oai, h k < Z • h k + l  ( k = 0 '  1 . . . . .  N )  (4 .2 )  
i~l  

where h 0 = 0, hN+ 1 = H. Again, the general solutions for v2 and ~2 are written as Fourier 
series (3.13), and the coefficients are determined by applying the boundary conditions 
(3.10b) and the transport condition (4.2). Inspection of (4.2) shows that IF(z) consists of a 
term linear in z and a number of "steps" associated with the sources. The first term can be 
written as (see e.g. [10]) 

f ( z ) = 2 ( ~ , , ~  ( - 1 ) "  nrrz 
n~r sin--H--' 0 < z < H ,  (4.3) 

and a sine-series representation of a step function that satisfies 

gi(z) =0, O < z < h ,  

= Qai '  hi < z < n 

is found by elementary Fourier theory, yielding 

g ~ ( z ) = 2 O a i ~  1 ( n~rh i } .  n~rz 
. ffi 1 ~-~ ~COS-----~ - ( - 1)" sin---H---, 0 < z < H .  (4.4) 

The transport condition (4.2) is then concisely formulated as 

N 

IF(z)  = f ( z )  + E g , (z )  
i=1 

N ~ 1 n~rh i . n~rz 
- 2 Y'~ Q~i ~--~cos-----H--- sin__---if-, 0 < z < H,  (4.5) 

iffil nffil 

and can be used directly to determine the coefficients in the general solutions (3.13) for fi2 
and ~2. It is obvious that negative values of Q~i are also allowed for, provided that 
condition (4.1) is still satisfied. This means that the analysis is also applicable to any 
combination of multiple sources and sinks of arbitrary strength. 

Similarly, the extension can be made to a distributed line source. If the fluid is emitted 
uniformly from a distributed source of height 2d centred at z = h, the vertical O ( E  1/2) 
flux T(z)  in the E 1/3 layer is calculated as in the multiple-source configuration, yielding 

¢ ( z )  
Z ^ = ---ffQ~, 

= _ z + - - ¢ z - h - d ~ ,  
2a" " 

O < z < h - d ,  

h - d < z < h + d ,  

h + d < z < I I .  

(4.6) 



257 

T h e  F o u r i e r  s ine-ser ies  r e p r e s e n t a t i o n  o f  this f u n c t i o n  is 

( H ) 2  . n c r d  n~rh . n~rz 
2 0 ~  ~.~ ~ sm---H--COS--H--Sln--H--,  

. = 1  

0 < z < H ,  (4 .7)  

a n d  the/32, w 2 so lu t ions  can  be  d e t e r m i n e d  as before .  

D u e  to the  ins igh t  o b t a i n e d  f r o m  p r e v i o u s  w o r k  ([4], [9]) and  f r o m  the  p r e sen t  s tudy,  it 

is n o w  poss ib le  to  ana lyse  the f low d r iven  by  any  a x i s y m m e t r i c  a r r a n g e m e n t  o f  single,  

m u l t i p l e  o r  d i s t r i b u t e d  sources  a n d  s inks l oca t ed  at the  s idewal l ,  at  the  end  caps  a n d / o r  at 

a r b i t r a r y  pos i t i ons  at  s o m e  d i s t ance  f r o m  the  bounda r i e s .  
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